
www.manaraa.com

A Future for Software Engineering?

Leon J. Osterweil
Laboratory for Advanced Software Engineering Research

University of Massachusetts
Amherst, MA 01003 USA

ljo@cs.umass.edu

Abstract

This paper suggests the need for a software
engineering research community conversation about
the future that the community would like to have. The
paper observes that the research directions the
community has taken in the past, dating at least back to
the formative NATO Conferences in the late 1960’s,
have been driven largely by desire to meet the needs of
practice. The paper suggests that the community
should discuss whether it is now appropriate to
balance this problem-solving-oriented research with a
stronger complement of curiosity-driven research. This
paper does not advocate what that balance should be.
Neither does it advocate what curiosity driven research
topics should be pursued (although illustrative
examples are offered). It does does advocate the need
for a community conversation about these questions.

0. Preamble

“…we recognize that a practical problem of
considerable difficulty and importance has arisen: The
successful design, production and maintenance of
useful software systems. The importance is obvious
and the more so since we see only greater growth in
demands and requirements in the future. The
consequences of poor performance, poor design,
instability and mismatching of promise and
performance are not going to be limited to the
computing fraternity, or even their nearest neighbors,
but will affect considerable sections of our society
whose ability to forgive is inversely proportional to
their ignorance of the difficulties we face. The source
of difficulty is distributed through the whole problem,
easy to identify, and yet its cure is hard to pinpoint so
that systematic improvement can be gotten.

Our problem has arisen from a change of scale which
we do not yet know how to reduce to alphabetic
proportions. Furthermore we must assume that
additional magnification of goal will take place without

necessarily being preceded by the emergence of a
satisfactory theory or an organized production of tools
that will permit work and costs to fall on growth curves
which lie significantly below those which now exist.
For example, we can see coming the need for systems
which permit cooperation, e.g., between engineering
and management information. Not only must we know
how to build special purpose systems, but how to
combine them into larger ones.” A.J. Perlis, 1968 [17].

1. Introduction

What is the future of Software Engineering? To
project the future, it seems necessary to understand the
past—and the present as well. Knowing the past and
the present will indicate just where we are and will also
suggest the momentum that will be pushing us forward.
But our community and our discipline will face
additional forces that will try to move us and shape our
future as well. Many of these forces are external, and
will have a crucial effect on where we go and what we
do. This paper argues, however, that we would be well
advised not to allow our future directions to be
determined solely by external forces. Decisions that we
make for ourselves and about ourselves should also be
prime forces that guide us forward.

Thus, the structure of this paper is as follows: we
begin with a brief summary of the history of Software
Engineering, leading up to an attempt to characterize
our current position and situation. The paper then
proceeds with a discussion about a variety of current
trends, and their potential impacts upon the discipline
of Software Engineering. The paper concludes with a
plea for community introspection in the form of
curiosity-driven research, suggesting the need for
forums for setting goals and directions for the future,
especially as illuminated by consideration of the past
and present.

The future of Software Engineering should be in
our own hands. But it may require some proaction and
determination to seize it.

www.manaraa.com

2. The past

Most observers would agree that Software
Engineering began as a discipline in the late 1960’s
with the famous “NATO Conferences” [3, 12]. But, in
fact, software was being developed and engineered for
at least 15 years prior to the first of these conferences.
The conferences, nevertheless, gave this activity a
name, “Software Engineering”, and an overriding goal,
namely dealing with the “Software Crisis”. The
attendees at these meetings were senior figures in
computing. In that they discovered a remarkable set of
similarities in the problems that they were having
trouble dealing with, they thus legitimatized Software
Engineering as the study of the broad range of
problems encountered in developing software.

The presentations and discussions at the 1968
NATO Conference ranged over a set of topics, some of
which no longer seem relevant. For example, the
debate about whether or not software should be priced
separately from hardware [12, pp. 129-135] has long
since been resolved. Likewise, there is now little
discussion of whether or not system software can
reasonably be coded in a higher level language. Both
were topics of considerable debate in 1968.

But the 1968 NATO Conference also devoted
considerable attention to many issues that are quite
familiar to us today. Thus the issue of how to create
processes that could be expected to be effective in
producing high quality software on schedule and
within budget [2, 6, 21] was highlighted. Dijkstra [4]
advocated the use of hierarchy that anticipated
approaches that gained popularity in subsequent
decades. McIlroy [11], moreover, was already
advocating the use of components as keys to effective
software development.

Problems of scale were also introduced and
addressed by speakers such as Perlis [17], and others
[12, pp. 65-70]. Another major topic of conversation in
1968 was software quality. Llewelyn and Wickens [9]
focused on the issue of testing in general. Pinkerton
[18] addressed approaches to the problem of
performance testing. This was complemented by
considerable discussion throughout the meeting of the
role of more mathematical approaches to reasoning
about software in order to assure correctness and other
qualities. Yet another topic of considerable discussion
was the nature of design, its role in the overall software
development process, and its relation to coding [12, pp.
35-65]. All of these issues remain before our
community today, and continue to be the subjects of
ongoing research and discussion.

The response of the early pioneers in Software
Engineering was to grasp these problems eagerly and
begin to seek ways to address them. Better
programming languages were proposed and evaluated.
Tools for supporting testing were implemented, and

were complemented by more formal methods of
analysis, all aimed at measuring and improving quality.
There was recognition of the need for considerable
effort prior to coding. The importance of requirements
was emphasized, and the position of this activity in the
larger software development lifecycle was established.
The importance of effective management of
development led to the establishment of software
metrics, and attempts to use them to guide the
development process.

It is important to note that many of these research
efforts led to important improvements in the way in
which software engineering has been practiced. In
many cases, the impact of the research has been
indirect, and in nearly all cases, the impact has taken a
frustratingly long time to be seen and felt. But impact
has been felt, and can be demonstrated, as well will
elaborate upon shortly.

On the other hand, despire vigorous efforts over the
past 40 years, many of the problems of 1968 remain
essentially unsolved. Surely there has been gratifying
progress in such areas as programming language
improvement, software testing approaches, support for
precoding phases of development, and software
metrics. But in each area the solutions currently at
hand are far from adequate for solving the problems
that software developers face. The comments that
Perlis made in 1968, quoted in the preamble to this
paper, are, even today, a reasonable characterization of
the situation that we face as software engineers. Thus,
the stubborn persistence of problems first identified
decades ago has certainly led to frustration. But it has
increasingly also led to a growing suspicion that the
immediate problems might well be manifestations of
issues that are far deeper and more profound.

It seems particularly important to observe that
frustrations arising from continued grappling with
stubborn problems has often led to understandings of
deeper issues that turn out to be needed in order to
fashion successful approaches to the problems. This
has certainly been the experience in other disciplines.
Thus, for example, calendar-making, and predicting the
positions of planets in the sky, became increasingly
difficult and frustrating over the centuries, until the
Copernican revolution identified the need to replace
the Earth with Sun as the center of the solar system.
This conceptual shift enabled the establishment of
rigorous laws of planetary motion that, in turn, led to
substantial simplifications of problems such as
predicting planetary positions and establishing reliable
calendars.

Similarly, electricity was a source of amusement
and amazement through the early years of the 19th
century. But it could not be used as the source of
reliable energy for lighting and for the operation of
machinery until its fundamental nature was understood,
and its behavior characterized by scientists such as

www.manaraa.com

Maxwell. In medicine too, progress in the treatment of
diseases was ad hoc and unsatisfactory until the nature
of microorganisms was understood. These
understandings paved the way for the effective
application of antibiotics in treating broad classes of
infections. More recent understandings of the nature of
viruses is starting to lead to antiviral drugs and
therapies increasingly available today.

In a similar way, we note that software engineers
over the past few decades have also increasingly
viewed the persistence of stubborn problems as
indicators of the need for fundamental research that
probes the nature of deeper problems. Thus, for
example, software evolution was recognized as a
central problem at least as long ago as during the 1968
NATO conference, where the need to migrate software
in response to changes in need was identified as a
major software engineering problem. A variety of tools
and systems for addressing this problem were built and
evaluated. But the stubborn resistance of this problem
to a variety of solution attempts eventually led early
researchers such as Parnas [16] to look for deeper
issues and ultimately suggest approaches such as
implementation-hiding, and the enunciation of the deep
concept of modularity. Exploration of the nature of
modules, and their use in improving the effectiveness
of software development, was also addressed by others
(eg. [7. 8]), and has led over the years to a spectrum of
improvements to practice.

In t1his example, we see a nice illustration of the
duality, and mutual reinforcement, of problem-solving
and theoretical conceptualization. A problem in
software evolution was eventually seen as a symptom
of the need for a more disciplined approach to the
development of software, centered around a
recognition of the need for implementation-hiding
modules. A period of conceptual research followed,
during which there was considerable attention paid to
understanding the nature of a module, to defining
modules rigorously, and to supporting the
implementation of modules and their use in evolution.
The basic concept, and the basis it provided for the
development of more effective tools, led to more
effective approaches to the evolution of software, and
to other improvements as well.

It is important to note that in this example, as in a
number of other examples that could be adduced, the
problem originated in the domain of practice. The
research community understood the importance of the
problem, found it to be interesting, and made it a part
of the community research agenda. Understanding of
the underlying problem was reached as a consequence
of fundamental conceptual research, which in turn led
to improvements in practice. The history of Software
Engineering contains a number of other such
illustrations of this close duality. Indeed, it seems
particularly interesting to note that the editors of the

1969 NATO conference had already noted that the tone
of that second conference emphasized the growing
problem of a “software gap” between theory and
practice. The proceedings feature a long comment from
Strachey [23] that focuses on the existence of strong
divisions between those who actually build large
software systems, and those who would try to help
with research ideas and approaches. Strachey and
others at the conference emphasized the need for
greater mutual understanding between the communities
of software development practice and software
research (theory). Certainly this theme has resonated
through the decades that have ensued, and to our
present situation today.

 It seems clear that the agenda for basic software
engineering research has in the past been driven
strongly by study of the problems arising in practice,
and progress in practice often benefits greatly from the
results of research. This continues to be the case today.
None of this should be at all surprising, as it is very
much analogous to experience in such other areas as
medicine, physics, and chemistry. In some important
senses, the recognition of how to exploit interactions
between research and practice stands as a key pillar of
Software Engineering today.

It seems important to note that case studies of the
ways in which software development practice and
software engineering research have complemented
each other, to the benefit of both, are being carried out
as the focal point of the Impact Project [14]. The
Impact Project’s studies note that the impact of
research upon practice tends to be indirect, and that
research results rarely move quickly and directly from
the research lab to industrial practice. Both researchers
and practitioners need to continue to work to improve
this situation. But it is also important to recognize that
research findings have not uncommonly been the
sources of change and innovation in industry, affecting
agendas for improvements in practice just as surely as
study of industrial practice has influenced research
agendas.

Software Configuration Management (SCM)
provides one very specific example. In [5] the
development of SCM is traced from its early
beginnings. SCM grew out of a need to support the
management of complex software development
projects that increasingly required the collaboration of
many people, and the assembly of large numbers of
software objects, often requiring the application of
sequences of tools and systems. Clear
conceptualizations of the nature of this problem came
from careful study of the underlying problem. These
led to early SCM systems. Their inadequacies were
observed from their application in practice, leading to
further cycles of study, understanding, and
improvement. Other Impact Project studies are leading
to similar conclusions, namely that research and

www.manaraa.com

practice are mutually supportive, and that continued
interactions between the two areas of endeavor seem to
be most effective in leading to continued
improvements in practice, as well as continued
understandings of deeper issues.

3. The present

The foregoing helps to elucidate the dual nature of

Software Engineering today. It encompasses two
complementary, mutually supportive, types of
activities, namely the development of tools and
technologies to directly address the practical problems
of the day, and the search for deeper understandings
that can provide the basis for more effective tools and
technologies. As indicated above, the synergy between
these two types of activity has been effective in the
past. Indeed, it has been necessary. There has been a
clear need to develop a technology of software
development, just as there had been a need for a
technology of dealing with electricity, chemicals,
machines, and airplanes. In these latter cases, this led
to the development of Electrical Engineering,
Chemical Engineering, Mechanical Engineering, and
Aerospace Engineering. Each of these engineering
disciplines, however, was based upon a base of
science, provided largely by Physics and/or Chemistry.
In the case of Software Engineering, however, this has
not been possible, as none of the existing sciences
seems to provide a satisfactory basis upon which to rest
an effective technology for engineering software.
Clearly Mathematics, especially Finite Mathematics
has much to offer, but so do Sociology, Management,
Psychology, and Epistemology. Thus, we have had to
develop our own basis in science, drawing importantly
upon a variety of existing scientific disciplines, and
synthesizing as seems useful. As a consequence, we
have seen the development within Software
Engineering of both an activity that leans towards
technology development, and an activity that leans
towards scientific inquiry. The result has led to some
notable successes.

The Software Engineering community should take
great pride in the fact that Software Development is
now one of the world’s preeminent economic forces.
The total value of software development products and
services must certainly be measured at least in the
many hundreds of Billions of (US) dollars annually.
Software development is viewed as an industry that
can bring wealth to nations, corporations, and
individuals worldwide. Moreover, software now drives
applications in virtually all areas of human endeavor.
The traditional application of software to problems in
such traditional areas as business and communications,
for example, are now complemented by pivotal use of
software in medicine, transportation, and even the arts
and entertainment. Certainly the success of the

software development community in meeting
challenges raised by these many diverse areas must be
viewed as a triumph of historic dimensions.

While these successes must be credited most
directly to the practitioner community, it would be a
mistake to ignore the contributions of software
engineering research. The enormous volumes of code
required to meet these challenges, for example, cannot
be managed without such technologies as
Configuration Management, and Impact Project
studies, as noted above, demonstrate the indispensable
contributions of research in this area. Superior software
languages, management approaches, testing tools, and
modeling methods all play similarly important roles.
And in each of these areas software engineering
research continues to provide pivotal insights,
prototypes, and analyses that help move practice
forward. Documentation of the contributions of
research in these areas can also be found in additional
Impact Project studies [7].

It is important to emphasize, in addition, that
software engineering research continues to obtain a
symmetric benefit from its contact with the community
of software development practice. The development
community brings to the research community a wealth
of problems whose consideration continues to lead to
important new areas of research. Indeed the flow of
new problems from the community of practice has
continually served to energize and rejuvenate the
software engineering research community. The energy
can be felt through a large and diverse number of
workshops, symposia, and conferences now held more
or less continuously all around the globe. There is also
a large and growing archive of research papers
published in a collection of magazines and journals
that also continues to grow in size and scope. Despite
periodic boom-and-bust cycles, employment
opportunities for software engineers continue to grow,
and opportunities for generous compensation for
successful product innovations continue to deliver
outsized wealth to a lucky few.

In summary, it seems that the important indicators
of health and success for our community are all already
very strong and yet steadily improving. It seems
important, however, to consider where these indicators
lead, and whether or not our future should be to simply
extrapolate them forward.

4. One view of the future

The current picture, thus, of the software

engineering community seems to be one of robust
health, with research and practice interacting over a
broadening range to the benefit of both, and to society.
In the past we have developed notions such as
modularity and encapsulation to enable us to generate
ever larger numbers of machine instructions from

www.manaraa.com

every line of source code written. We are now able to
produce systems consisting of hundreds of millions of
instructions. We have devised such notions as Software
Configuration Management, Software Product Lines,
Software Test Automation, and Software Development
Environments, and have produced tools and systems to
support them. This has enabled the global software
development industry to field huge and complex
systems, to maintain them in the field, and to evolve
them in the development lab.

Pressures and incentives to continue in this way are
very strong, and appear to be growing. The size and
complexity of the software systems demanded by
society continue to grow (exactly as noted by Perlis in
1968). Larger and more complex networks, more life
critical applications, increased concern for privacy and
security, all create new challenges, requiring research
into new areas, and serving to further energize the
research community. Our success in meeting technical
challenges in the past emboldens us to take on these
new challenges as well. Thus, software engineering
research is increasingly examining such challenges as
studying security and privacy in embedded systems,
and ways to determine the range of possible behaviors
of systems built out of distributed components, even
when source code for some of the components is
inaccessible.

Other new domains of investigation are now on the
horizon and moving closer. We note, for example, a
sharp increase in interest in software used in the
medical, mechatronic [22] and automotive domains
[20]. Some of the challenges faced in these domains
seem relatively familiar, and amenable to approaches
that our community has already developed. Other
challenges will require ingenuity, and the marshalling
of technologies and scientific insights from other
domains (eg. realtime systems, database technology,
human-computer interfaces, etc.).

In addition, it seems clear that software engineering
will have much to gain from a more intimate set of
interactions with researchers in the traditional sciences,
especially the Life Sciences. It is increasingly clear that
DNA sequences define the objects and processes that
make living organisms work the way that they do. Life
Scientists are increasingly trying to understand the
large-scale behavior of devices (ie. living organisms)
by looking at encodings of their low-level workings. In
this way, they are in need of skills and technologies
that Software Engineering has been struggling with for
decades. Our technological expertise can help Life
Science research. Conversely, the nature of the devices
defined by DNA sequences far exceeds in complexity
the computing systems that we have built and studied
in the past. We have much to learn from joining Life
Scientists in trying to understand (and modify) the
systems that they are in contact with. Indeed, it is
increasingly apparent that most of the traditional

sciences are making increased use of computation and
computational modeling as tools for pursuing their
research. The problems that they are encountering
seem to have the potential to stimulate growth in
software engineering research, much in the ways that
the problems encountered by business and industry
have been providing our community with research
inspiration in the past.

Thus, it seems clear that both traditional and new
communities of practice will continue to push us to
interact with them. Modes and mechanisms of
interaction with these communities have been
established, and will certainly be adapted and evolved
to foster increasingly productive interactions in the
future.

It seems important to consider, however, whether
the directions of the past are suitable for the future. In
particular, the development of scientific inquiry in
Software Engineering in the past seems to have been
driven primarily by consideration of practical problems
arising from communities outside of our own. We have
obtained clear benefits from this. But does it seem
reasonable and appropriate for our community to look
primarily outside of the community for sources of
research inspiration?

5. A different view of the future

It may be time for the Software Engineering

community to step back, examine the trajectories it has
been following over the past decades, and think about
whether these trajectories might be modified or
augmented. We have noted that mature scientific
disciplines such as Physics, Biology, and Chemistry all
seem to have sprung from an increasingly elaborate
and effective practice of addressing problems arising
from the difficulties of the real world. While these
various practices became increasingly effective in
dealing with these problems, the growing successes
increasingly highlighted and circumscribed areas in
which success was less predictable and reliable. Thus,
the practice of healing diseases arising from bacteria
was dramatically improved with the discovery of
antibiotics. But, viral diseases were completely
resistant to this approach. This striking lack of success
led to investigation of the nature of viruses and the
opening of huge new vistas of scientific inquiry and
discovery. In similar ways, early successes in
metallurgy circumscribed some areas of failure,
leading to the opening of new areas of chemistry. Is it
time for Software Engineering, while taking great pride
in what we have done so successfully in the past, to
now step back and circumscribe areas that have
continued to resist our best efforts, and to see if
probing their nature can open large and important new
areas of scientific inquiry?

Our past success in addressing problems arising

www.manaraa.com

from the domain of practice can be labeled as problem-
driven research. Perhaps it is time to supplement this
type of research with a complementary type of research
that we should call curiosity-driven research. While the
goal of problem-driven research may be to return to the
real world solutions to problems encountered there,
and to answer questions arising there, the goal of
curiosity-driven research is to identify questions of a
deeper nature. Typically such questions arise from the
minds of the researchers after long and serious
grappling with the problems of the real world. Thus,
for example, biologists eventually concluded that,
rather than struggling to understand why antibiotics
don’t help with a long list of diseases, it might be more
appropriate to instead try to understand what such
diseases might have in common in order to devise a
broader approach to all of them. The difference here is
that the initiative for the establishment of a research
direction such as this comes directly from the
researchers in the community, and only indirectly from
the practitioners in the domain.

Thus, there are two important rationales for
curiosity-driven research. One is that this type of
research has the potential to address a variety of
problems across a broad range, rather than separate
individual problems. The other, however, is that in
pursuing curiosity driven research, the research
community seizes direct control over the directions that
it will be taking—it takes control of its own agenda.
Mahoney [10] has observed that this is the very
definition of a mature scientific discipline.

We can bring these rationales together with the
single observation that mature scientific disciplines
seem to all center around their study of a core of deep
and enduring questions that have defied adequate
resolution for very long periods of time (perhaps
centuries), but whose continued dogged pursuit has led
to innumerable findings of interest and importance.
Indeed, it seems that it is the identification of these
questions, and the elusive nature of their resolution that
characterizes the highly respected mature scientific
disciplines such as Physics, Astronomy, and Biology.
Thus, for example, Physics continues to try to
understand the nature of matter and energy, and their
relationship to each other. Astronomy seeks to
understand the origin of the universe. Biology seeks to
understand what life is, and how living organisms
work. Nobody expects quick and easy answers to these
questions, but study of the many ramifications and
manifestations of such questions has led to the growth
of these disciplines, and the respect that they have
earned. It is not insignificant to observe that these
questions did not come from practitioners seeking help
with their immediate problems. Rather they came from
the minds of researchers looking for unifying
understandings that could help in dealing with ranges
of problems.

Perhaps it is time for Software Engineering to
embrace the importance and timeliness of curiosity-
driven research, as a complement to the problem-
driven research that has driven us in the past, and must
continue to be a driver in the future. Perhaps it is time
for software engineering to seek the deep and enduring
questions that can serve to define us as a discipline,
while also leading to the fundamental understandings
that can support more effective solutions to the
problems that arise in practice.

Perhaps it is time for us to devote less of our energy
to seeking answers to the questions raised by others,
and more of our time and energy to seeking our own
curiosity-driven questions.

6. Some questions

It would remiss if this paper did not at least suggest
some examples of curiosity-driven questions that might
serve the community of software engineering research.
While it is not the purpose of this short paper to insist
upon the suitability of these exact questions, and
thereby attempt to define the direction for software
engineering research, it seems appropriate to at least
try to provide a few examples that might be food for
thought. In that spirit, the following are suggested:

6.1. Question: What is design (the noun)? And
how should it be performed (the verb)?

As noted above, these questions were indeed raised

at the NATO conferences. Indeed at that time Naur
suggested that “software designers are in a similar
position to architects and civil engineers, particularly
those concerned with the design of large heterogeneous
construction, such as towns and industrial plants. It
therefore seems natural that we should turn to these
subjects for ideas about how to attack the design
problem.” Naur suggested that much might be learned
from earlier scholarly investigations of design, such as
the book by Alexander [1]. While much has indeed
been learned by observing how other disciplines have
pursued design and understood it, there is also a line of
thought that suggests that software engineers might
have some uniquely keen and useful insights of their
own to offer. While civil engineers, for example, deal
ultimately with tangibles, software engineers, because
of the nature of their medium, are forced to deal
exclusively with abstract non-tangibles. As design
seems to be a non-tangible, perhaps software engineers
might have some uniquely sharp and useful insights to
offer about the nature of design, both the noun and the
verb. Whether or not this may be true, it seems clear
that those who have studied the development of
software should be able to make an important
contribution to understanding the nature of design, and

www.manaraa.com

should take the pursuit of this issue as a key item on
the community’s research agenda.

It is important to emphasize that indispensable
inspiration, intuition, and insight are to be drawn from
the problems encountered in practice, and that
invaluable contributions to practice will be made as a
consequence of success in achieving deep insights. But
investigation of the nature of design must not be driven
entirely by the exigencies of practice, important though
they may be. Curiosity about the nature of design in
general, even though it may not have an immediate
connection to practice, must be not simply tolerated,
but encouraged and nourished. In that regard, it seems
important to note that this volume itself contains a
paper that explores the nature of software design, and
its relation to the larger issue of design in general [24].
Papers dealing with curiosity-driven research of this
kind must not be restricted only to the pages of special
volumes such as this, but should become a staple of
mainstream software engineering research venues,
such as the proceedings of meetings such as the
Foundations of Software Engineering and International
Conference on Software Engineering as well.

6.2. Question: What is a model?

It is interesting to note that much of the work on

such topics as software design, software architecture,
and software requirements ultimately winds up dealing
with models. While modeling seems to be an essential
vehicle for the exploration of many software
engineering topics, it seems to be a mistake to think of
modeling solely as a manifestation of other activities.
Perhaps it is also important to contemplate the question
of what a model itself is, and what the activity of
modeling is all about. As with the above question, it
may be that software engineers, because of their long
and deep involvement with non-tangibles, might have
some special insights that might be less readily
apparent to those who deal with models in the context
of their work with tangibles such as cars, chairs, or
buildings. Indeed, Plato, in his Allegory of the Cave
[19], suggested that what is less directly observed and
observable might, in an important sense, be more real,
and what is being directly observed might, in that same
sense, ultimately turn out to be less real. Software
engineers often have a sense that the abstract models of
the systems that they seek to build are often, in some
(currently) largely intuitive sense, more valuable and
useful than the (often flawed and inadequate) code that
is most directly observable. As with Plato, the sense
here is that the abstract, unimplemented model might
actually be more real and important, while the directly
observed code may be a more imperfect, and less
satisfying, shadow of “reality”. Perhaps Software
Engineers should study Plato as part of their
education?

It seems clear that the concept of a model is closely
related to notions of abstraction, and thus that Software
Engineers, who deal effectively with the creation and
exploitation of abstractions, might have some
especially keen and useful insights into the nature of
models and modeling.

6.3. Question: How can we quantitatively
measure software and assess its quality?

The problem of determining software quality was

also enunciated at the 1968 NATO Conference, and it
has been the subject of research continuously in the
decades since then. Our continued inability to make
much progress in coming up with measures that are
scientifically sound and reliably effective in dealing
with a broad spectrum of problems has continued to
frustrate the community. It is interesting to note, for
example, that attempts to measure even the most
rudimentary software dimension, the size of a body of
software code, have been frustrating. Ought we to
measure the number of statements, “lines”, characters,
function points, generated machine code, etc.? Indeed
an entire handbook [15] has been written to suggest the
variety of different ways in which this seemingly easy
dimension of software is to be measured.

Attempts to quantify quality have been even more
frustrating. Indeed, it is not uncommon to note that
quality is multidimensional, encompassing such
attributes as correctness, efficiency, robustness,
flexibility, etc. Thus it has often been suggested that it
makes more sense to try to measure “qualities” rather
than trying to measure the more monolithic “quality”.
But attempts to define measures of any of the
dimensions of quality have proven to be equally
frustrating.

As noted above, such continued frustrations should
be taken as a clear indication that there is probably an
underlying problem that is quite deep, and whose direct
investigation might well lead to gratifying
understandings and broad and important insights. The
insights and understandings are likely to have
important ramifications for improvements to practice.
But here too it seems that this research might
ultimately be more successful if it is curiosity driven,
rather than driven by the exigencies of practice. The
underlying problem here seems to be that the entity to
be measured and assessed has no tangible
manifestations at all. It seems far easier to measure and
assess entities that have manifestations that are
amenable to detection by the five traditional human
senses. How are we to deal with the desire to measure
something that is not detectable in these ways? Those
whose work ultimately results in tangibles have tended
to fall back upon the more familiar and comfortable
measurement of these tangibles. Thus, for example,
Mechanical Engineers seem to be far more successful

www.manaraa.com

in measuring the mechanical devices that result from
their work, than the designs they produce. Software
Engineers have no such tangibles to measure, as the
results of our work are non-tangible. We can indeed,
and have in the past, attempted to assess the software
that we build in terms of its effects upon the tangible
world. But perhaps it is time for us to complement this
indirect approach to measuring and evaluating
software, and try a direct attack upon the harder
problem of measuring the intangible directly. Indeed
other types of entities such as laws, processes, designs,
and recipes raise this same problem. The attempts of
practitioners in these areas to quantitatively measure
and assess their non-tangibles continue to lead to
similar frustrations. Perhaps Software Engineering has
something unique to offer. Perhaps it is time for us to
address this problem directly.

6.4. Question: What is Software?

It has been puzzling to note that this question has

somehow never been made the subject of serious
inquiry by our research community. At ICSE 2002, this
question was asked of more than 30 randomly selected
conference attendees, and it was discovered that none
had ever thought about it. Indeed, at the closing panel
of that conference one of the most respected
researchers in the software engineering community
decried it as a question of dubious value. Yet, it seems
odd that our discipline should be named as the
engineering pursuit of something called “software”,
and yet no definition of “software” seems to be
accepted by the community, and no research seems to
have been addressed towards understanding the very
nature of this entity/concept/??.

It is likely that there would be little objection to the
suggestion that “software” contains elements of design,
is somehow representable by models, and that it should
be measured, and should be amenable to the
quantification of its quality. Thus, the investigation of
the preceding questions could potentially contribute to
an understanding of what software really is. But there
should also be room for a direct inquiry into the nature
of software itself, in addition to inquiries into various
of its parts and manifestations.

Perhaps one approach is to consider the natures of
various of its manifestations, and the nature of their
similarities and differences. Previous research has
suggested that, for example, processes are software
[13]. Indeed decades of research seems to confirm that
computer software and process software have much in
common. If this is the case, then what defines the type
of the entity that we refer to as software, of which
these two are subtypes? What characteristics can we
infer from each by studying the other? What
approaches to the development, verification of
qualities, and evolution of one can help with the other,

and what does all of this say about the supertype of
both? Are there indeed other subtypes of software, and
what might they tell us about all of this? These
questions seem to be deep, enduring, curiosity-driven,
and not likely to be of immediate interest to the
community of practice. Exploration of these questions,
however, might well lead to fundamental
understandings that might indeed be of enormous value
to the community of practice.

The pursuit of these questions could define an
important current of software engineering research for
decades, and could do much to place control of our
community research agenda in our own hands.

7. The future of software engineering is in
our hands

At the beginning of this paper it was suggested that
our future is in our hands. The meaning of that
statement should now be more clear. This paper has
tried to make a case for the importance of curiosity-
driven research, as a complement to the problem-
driven research that has been predominant in the past.
But it is the software engineering community that must
decide upon the importance of this type of research,
and must support it in tangible ways, such as accepting
its legitimacy in its featured publication venues. Such
acceptance is definitely not assured, however. It is
clear, for example, that there will be an increasing flow
of problems that originate in practice, and there is no
doubt that there will be a steadily increasing need for
our community to grapple with them. Correspondingly,
there is a steadily increasing number of venues for the
presentation of such papers, and the publication of
archival research results originating from the domain
of practice. If these publication venues choose to insist
upon the publication only of results of problem-driven
research, and if these venues decide to deny
publication to curiosity-driven research, then the
direction of our community will have been decided.
Fortunately, these venues are all controlled by our own
research community, however, and thus these decisions
are not mandated upon us, but can be chosen by us. A
pessimistic assessment of the current situation is that
curiosity-driven research papers are rarely accepted by
these publication venues, and that there seems to be a
decided preference for papers driven by the needs of
practice. There is nothing wrong with this, if the
decision to favor such papers, essentially to the
exclusion of papers of the other kind, is the result of
careful consideration of what is best for the health of
the community. On the other hand, there seems to have
not been any debate about this, leading to the
perpetuation of a research direction and trajectories
that were begun decades ago.

Perhaps it is now time for a reconsideration of these

www.manaraa.com

trajectories. It would be a great shame if the future of
research in software engineering were decided by
default and inertia, rather than by consideration of what
we as a community think is best for ourselves. A
debate on that subject is needed, and now seems to be
an appropriate time for such a debate. The solicitation
and appearance of this paper for this venue is a very
encouraging sign. One can only hope that it signals the
beginning of consideration of some fundamental
questions that could form the core of an enduring
scientific discipline of software engineering.

8. References

[1] C. Alexander, Notes on the Synthesis of Form, Harvard
University Press, Cambridge, MA, 1964.

[2] R.W. Bemer, “Checklist for planning software system
production”, in P. Naur and B. Randell, eds., Software
Engineering, Report on a conference sponsored by the NATO
SCIENCE COMMITTEE, Garmisch, Germany, 7-11 October
1968. Scientific Affairs Division NATO, Brussels, Belgium,
pp. 165-181. Also available at
http://homepages.cs.ncl.ac.uk/brian.randell/N
ATO/nato1968.PDF.

[3] J.N. Buxton and B. Randell, eds., Software Engineering
Techniques, Report on a conference sponsored by the NATO
SCIENCE COMMITTEE, Rome, Italy, 27-31 October 1969.
Scientific Affairs Division NATO, Brussels, Belgium, also
available at
http://homepages.cs.ncl.ac.uk/brian.randell/N
ATO/nato1969.PDF.

[4] E.W. Dijkstra, “Complexity controlled by hierarchical
ordering of function and variability”, in P. Naur and B.
Randell, eds., Software Engineering, Report on a conference
sponsored by the NATO SCIENCE COMMITTEE, Garmisch,
Germany, 7-11 October 1968. Scientific Affairs Division
NATO, Brussels, Belgium, pp. 181-186. Also available at
http://homepages.cs.ncl.ac.uk/brian.randell/N
ATO/nato1968.PDF.

[5] J. Estublier, D. Leblang, A. van der Hoek, R. Conradi, G.
Clemm, W. Tichy, and D. Wiborg-Weber, “The Impact of
Software Engineering Research on the Practice of Software
Configuration Management”, ACM Transactions on Software
Engineering Methodology, 14, 4, Oct. 2005, pp. 383-430.

[6] S. Gill, “Thoughts on the sequence of writing software”
in P. Naur and B. Randell, eds., Software Engineering,
Report on a conference sponsored by the NATO SCIENCE
COMMITTEE, Garmisch, Germany, 7-11 October 1968.
Scientific Affairs Division NATO, Brussels, Belgium, pp.
186-189. Also available at
http://homepages.cs.ncl.ac.uk/brian.randell/N
ATO/nato1968.PDF.

[7] J. Goguen, J. Thatcher, and E. Wagner, “An Initial

Algebra Approach to the Specification, Correctness, and
Implementation of Abstract Data Types,” in Current Trends
in Programming Methodology, V. 4, Data Structuring, R.
Yeh (ed.), Prentice-Hall, Englewood Cliffs, NJ, 1978, pp.
80–149.

[8] B.H. Liskov and S.N. Zilles. “Specification Techniques
for Data Abstractions” IEEE Transactions on Software
Engineering, v. 1, #1, 1975, pp. 7-19.

[9] A.I. Llewelyn and R.F. Wickens, “The testing of
computer software”, in P. Naur and B. Randell, eds.,
Software Engineering, Report on a conference sponsored by
the NATO SCIENCE COMMITTEE, Garmisch, Germany, 7-
11 October 1968. Scientific Affairs Division NATO,
Brussels, Belgium, pp. 189-200. Also available at
http://homepages.cs.ncl.ac.uk/brian.randell/N
ATO/nato1968.PDF.

[10] M. Mahoney, “Software as Science—Science as
Software”, in History of Computing: Software Issues, U.
Hashagen, R. Keil-Slawik and A. Norberg (eds.), Springer-
Verlag, Berlin, Germany, 2002, pp. 25-48. Also available at
http://www.princeton.edu/%7Emike/softsci.htm.

[11] M.D. McIlroy, “’Mass Produced’ software
components”, in P. Naur and B. Randell, eds., Software
Engineering, Report on a conference sponsored by the NATO
SCIENCE COMMITTEE, Garmisch, Germany, 7-11 October
1968. Scientific Affairs Division NATO, Brussels, Belgium,
pp. 138-151. Also available at
http://homepages.cs.ncl.ac.uk/brian.randell/N
ATO/nato1968.PDF.

[12] P. Naur and B. Randell, eds., Software Engineering,
Report on a conference sponsored by the NATO SCIENCE
COMMITTEE, Garmisch, Germany, 7-11 October 1968.
Scientific Affairs Division NATO, Brussels, Belgium. Also
available at
http://homepages.cs.ncl.ac.uk/brian.randell/N
ATO/nato1968.PDF.

[13] L.J. Osterweil, “Software Processes Are Software Too,
Revisited”, Proceedings of the 19th International Conference
on Software Engineering (ICSE 1997), Boston, MA, May
1997, pp. 540-548.

[14] L. Osterweil, C. Ghezzi, J. Kramer, and A. Wolf,
“Editorial”, ACM Transactions on Software Engineering
Methodology, 14, 4, Oct. 2005, pp. 381-382.

[15] R. Park. “Software Size Measurement: A Framework for
Counting Source Statements,” Software Engineering
Institute, Carnegie-Mellon University Technical Report #
CMU/SEI-92-TR-020, ADA258304, Pittsburgh, PA. Also
available at
http://www.sei.cmu.edu/publications/documents/92.reports/9
2.tr.020.html.

[16] D.L. Parnas, “On the Criteria to be Used for
Decomposing Systems into Modules”, Communications of

www.manaraa.com

the ACM, v. 15, #12, Dec. 1972, pp. 1053-1058.

[17] A.J. Perlis, Keynote speech, 1968 NATO Conference, in
P. Naur and B. Randell, eds., Software Engineering, Report
on a conference sponsored by the NATO SCIENCE
COMMITTEE, Garmisch, Germany, 7-11 October 1968.
Scientific Affairs Division NATO, Brussels, Belgium, pp.
135-138. Also available at
http://homepages.cs.ncl.ac.uk/brian.randell/N
ATO/nato1968.PDF.

[18] T.B. Pinkerton, “Performance monitoring and systems
evaluation”, in P. Naur and B. Randell, eds., Software
Engineering, Report on a conference sponsored by the NATO
SCIENCE COMMITTEE, Garmisch, Germany, 7-11 October
1968. Scientific Affairs Division NATO, Brussels, Belgium,
pp. 200-204. Also available at
http://homepages.cs.ncl.ac.uk/brian.randell/N
ATO/nato1968.PDF.

[19] Plato, The Republic, Book VII, 360BC. Translated by
Benjamin Jowett, P.F. Collier, New York, copyright 1901
The Colonial Press. Also available at
http://www.ilt.columbia.edu/publications/plat
o_republic.htm, Markup, Copyright 1995, Institute for
Learning Technologies.

[20] A. Pretschner, M. Broy, I. Krüger, T. Stauner:
“Software Engineering for Automotive Systems: A
Roadmap”, in Future of Software Engineering 2007, L.
Briand and A. Wolf (eds.), IEEE-CS Press, 2007.

[21] B. Randell, “Towards a methodology of computing
systems design”, in P. Naur and B. Randell, eds., Software
Engineering, Report on a conference sponsored by the NATO
SCIENCE COMMITTEE, Garmisch, Germany, 7-11 October
1968. Scientific Affairs Division NATO, Brussels, Belgium,
pp. 204-209. Also available at
http://homepages.cs.ncl.ac.uk/brian.randell/N
ATO/nato1968.PDF.

[22] W. Schäfer, H. Wehrheim, “The Challenges of Building
Advanced Mechatronic Systems”, in Future of Software
Engineering 2007, L. Briand and A. Wolf (eds.), IEEE-CS
Press, 2007.

[23] C. Strachey, in J.N. Buxton and B. Randell, eds.,
Software Engineering Techniques, Report on a conference
sponsored by the NATO SCIENCE COMMITTEE, Rome,
Italy, 27-31 October 1969. Scientific Affairs Division
NATO, Brussels, Belgium, pp. 9-12. Also available at
http://homepages.cs.ncl.ac.uk/brian.randell/N
ATO/nato1969.PDF.

[24] R.N. Taylor and A. van der Hoek, “Software Design and
Architecture: The Once and Future Focus of Software
Engineering”, in Future of Software Engineering 2007, L.
Briand and A. Wolf (eds.), IEEE-CS Press, 2007.

